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Abstract
The embedded ensembles were introduced by Mon and French (1975 Ann.
Phys., NY 95 90) as physically more plausible stochastic models of many-
body systems governed by one- and two-body interactions than provided
by standard random-matrix theory. We review several approaches aimed
at determining the spectral density, the spectral fluctuation properties and
the ergodic properties of these ensembles: moments methods, numerical
simulations, the replica trick, the eigenvector decomposition of the matrix
of second moments and supersymmetry, the binary correlation approximation,
and the study of correlations between matrix elements.

PACS numbers: 02.50.Ey, 05.45.−a, 21.10.−k, 24.60.Lz, 72.80.Ng

1. Introduction

Canonical random-matrix theory (RMT) as introduced by Wigner [38] considers ensembles
of random matrices classified [16] by their symmetries. In the asymptotic limit of infinite
matrix dimension, N → ∞, this theory makes a number of remarkable predictions. The
average spectrum (the spectral density) has the shape of a semicircle, the spectral fluctuations
are universal (i.e. are under very weak conditions independent of the weight function used
to define the ensemble, are parameter-free and dependent only on the symmetries of the
ensemble), and the results are ergodic (so that for most members of the ensemble the spectral
average of any observable coincides with the ensemble average of that same observable). For
a recent review of the field, we refer to [22].

Nevertheless, early applications of canonical RMT to nuclear spectra encountered
objections or, at least, questions. This is because in RMT, the number of independent random
variables (i.e. of uncorrelated matrix elements) is of order N2. Put differently, in RMT every
state in Hilbert space is connected to every other such state by a matrix element which does
not vanish and is assumed to be an independent random variable. But with the success
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of the nuclear shell model, it had become clear that nuclei are governed by one- and two-
body interactions (the mean field and the residual two-body interaction). In a representation
of Hilbert space spanned by Slater determinants of single-particle wavefunctions (solutions
of the mean-field equations), the residual two-body interaction has non-vanishing matrix
elements only between determinants which differ in the occupation numbers of not more
than two single-particle states, and most matrix elements of the residual two-body interaction,
therefore, vanish. Even if one is prepared to accept a stochastic approach and considers the
non-vanishing two-body matrix elements of the residual interaction as uncorrelated random
variables, the ensuing stochastic model is very different from canonical RMT: the number
of independent random variables is generically small compared to the dimension of a typical
shell-model matrix. Why—so the question—can canonical RMT then serve as a model for
the description of fluctuation properties of nuclear spectra?

French and Wong [18, 19] and Bohigas and Flores [9, 10] approached this question with
the help of numerical simulations. These authors replaced the actual two-body matrix elements
of the nuclear shell model by random variables (this, in essence, defines the two-body random
ensemble (TBRE)) and studied the resulting spectral fluctuation properties. They concluded
that the fluctuation properties were consistent with predictions of canonical RMT.

Because of the complexities of angular-momentum and spin coupling and the exclusion
principle, the TBRE is not amenable to analytical investigations. Thus, the introduction of
the k-body embedded ensembles (EGE(k)) by Mon and French [32] might be considered an
essential step towards an analytical understanding of the numerical results obtained by French
and Wong [18, 19] and Bohigas and Flores [9, 10] and, thereby, of the stochastic properties
of nuclear spectra. Since then, the question has gained much wider significance: Canonical
RMT has successfully been used [22] in such diverse many-body systems as atoms, molecules
and quantum dots. All of these systems share with nuclei the feature that they are known to be
governed essentially by effective one- and two-body forces. Thus, the embedded ensembles
may be viewed as the generic models for stochasticity in many-body systems.

The embedded ensembles dispose of all the complexities of the couplings of angular
momentum and spin while retaining the symmetries imposed by the exclusion principle. One
considers m fermions in l degenerate single-particle states interacting via a random k-body
interaction. The single-particle states carry no further quantum numbers such as spin or
angular momentum. In contrast to shell-model calculations (where the single-particle states
are usually not degenerate) degeneracy is here assumed in order to focus attention on the results
of a stochastic k-body interaction. The interaction is not restricted to k = 2 (although this
remains the physically most interesting case). This is done in order to obtain an understanding
of the transition from the case k = 2 to the case k = m which, as it turns out, is equivalent
to canonical RMT. Just as in RMT, the embedded ensembles can be bestowed with unitary,
orthogonal or symplectic symmetry, and one distinguishes accordingly EGUE(k), EGOE(k)
and EGSE(k). As in canonical RMT, one is interested in universal properties. Therefore, one
considers the limit of infinite matrix dimension. This limit is attained by letting the number of
single-particle states go to infinity, l → ∞. EGE(k) is, thus, a generic model for stochasticity
in many-body systems governed by k-body interactions. Needless to say, EGE(k) can and has
been generalized to the case of bosons.

The central questions in the theory of the embedded ensembles then are: (i) What is the
shape of the spectral density? (ii) What are the spectral fluctuation properties? (iii) Are these
properties universal? (iv) Are the spectra ergodic?

In this review, we present the status of the field in the light of these questions. We start with
a definition of EGE(k). Then, we order the material by the analytical or numerical technique
which has been used, rather than by the properties of EGE which have been addressed.
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2. Definitions: the k-body embedded ensembles of fermions and bosons

We define the k-body embedded ensembles for fermions and for bosons for the cases of unitary
and orthogonal symmetries. We do not consider symplectic symmetry throughout this paper.

We consider a set of l degenerate single-particle states labelled |j 〉, with j = 1, . . . , l. The
associated creation and annihilation operators are denoted by a

†
j and aj in the case of fermions

and b
†
j and bj in the case of bosons. These operators obey the usual (anti)commutation

relations. Then, |j 〉 = a
†
j |0〉 or |j 〉 = b

†
j |0〉, with |0〉 the vacuum state.

To define the k-body interaction, it is useful to introduce operators which create a
normalized state with k � l fermions or k bosons from the vacuum. In the case of fermions,
these are written as

ψ
†
k,α = ψ

†
j1,j2,...,jk

=
k∏

s=1

a
†
js

(1)

where j1 < j2 < · · · < jk. The label k defines the number of single-particle creation operators,
while α stands for the set of j . The corresponding annihilation operators are given by

ψk,α =
(
ψ

†
k,α

)†
. (2)

In the case of bosons, the k-body operators have the form

χ
†
k,α = χ

†
j1,j2,...,jk

= Nα

k∏
s=1

b
†
js

(3)

where j1 � j2 � · · · � jk. Here, Nα is a normalization factor which guarantees that the state
χ

†
k,α|0〉 has norm unity. For every set of equal indices j containing n elements occurring in α,

Nα contains the factor 1/
√

n!.
The random k-body interaction for fermions is given by

Vk =
∑
αγ

vk;αγ ψ
†
k,αψk,γ . (4)

The coefficients vk;αγ are random variables with a Gaussian probability distribution, mean
value zero and a common second moment. The Vk form an ensemble of random operators. In
the case of unitary symmetry, the vk;αγ are complex. The only non-vanishing second moment
is

vk;αγ v∗
k;α′γ ′ = v2 δαα′δγγ ′ . (5)

The bar denotes the ensemble average. The Kronecker deltas stand for the string δj1j
′
1
δj2j

′
2
. . . .

In the case of orthogonal symmetry, the vk;αγ are real and obey

vk;αγ vk;α′γ ′ = v2[δαα′δγγ ′ + δαγ ′δγα′ ]. (6)

Following the usage in canonical RMT, we distinguish both cases by writing Vk(β) with
β = 1, 2 for orthogonal and unitary symmetries, respectively. The k-body random interaction
for bosons is defined in complete analogy with equation (4). The parameter v2 sets the scale
of the energy. As long as we consider only a single EGE(k), we can put v2 = 1 without loss
of generality.

We consider a Hilbert space obtained by distributing m � l fermions or m bosons over
the single-particle states |j 〉. A complete set of basis states for fermions (bosons) is given by
ψ

†
m,α|0〉 (by χ

†
m,α|0〉, respectively). The dimensions of these two spaces are
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N =
(

l

m

)
for fermions

NB =
(

l + m − 1

m

)
for bosons.

(7)

Here and in the following, we use the index B for bosons while we typically work without
such an index for the more frequent case of fermions. We take m � k and consider the matrix
of the k-body interaction Vk in that m-particle Hilbert space. The matrix elements 〈µ|Vk|ν〉
have the form

〈µ|Vk|ν〉 = 〈0|ψm,µVkψ
†
m,ν |0〉 (8)

and analogously for bosons. Using equation (4) for Vk, it is easily seen that for m = k, the
matrices of the k-body interaction Vk coincide with the GUE or the GOE, depending on the
symmetry chosen, both for fermions and for bosons. This is not the case for m > k. In this
case, we speak of the k-body embedded Gaussian ensembles (EGE(k)) of random matrices
in the m-particle Hilbert space. We use the notation EGUE(k) and EGOE(k) for the cases
of unitary and orthogonal symmetry, respectively. Aside from the (unitary or orthogonal)
symmetry, the embedded ensembles are defined in terms of the three parameters l,m, k. We
recall that in canonical RMT, the limit N → ∞ of infinite matrix dimension yields universal
results. For the EGE(k), we proceed likewise by taking the limit l → ∞ which implies the limit
of infinite matrix dimension. For fermions, we have the obvious constraint that k � m � l.
The limit l → ∞ with fixed k can be attained by keeping m fixed, or by keeping the ratio
m/l � 1 fixed. Brody et al [14] define the dilute limit by taking l → ∞,m → ∞,m/l → 0.
For bosons, m may be larger than l. Since EGE(k) is constructed in such a way that EGE(m)
coincides with canonical RMT for both fermions and bosons, and since in the dilute limit
the distinction between fermions and bosons becomes irrelevant, we expect that the spectral
properties of EGE(k) do not differ qualitatively for fermions and bosons except for the case
where the number of m bosons is close to or exceeds l, the dimension of the underlying
single-particle space. This is indeed what is found.

Canonical RMT is invariant under unitary or orthogonal transformations of Hilbert space.
While this statement carries over trivially to the k-body ensembles embedded into a Hilbert
space spanned by k particles, that invariance is lost for m > k. The calculation of spectral
properties of canonical RMT greatly benefits from such an invariance property. Thus, the
determination of the spectral properties of the embedded ensembles is much more difficult
than for canonical RMT.

3. Moments methods

The first analytical approach to EGE(k), developed by Mon and French [32], calculates
moments of the matrix elements of Vk and related quantities. It has led to insights into
the shape of the EGE(k) spectra (the spectral density) and to the development of statistical
spectroscopy in nuclei, and has given a limited answer to the question of ergodicity. These
topics are reviewed in [14, 28]. The approach has mainly been used for fermions in the context
of the nuclear shell model, although it can also be applied for bosons as in the interacting
boson model for nuclei. We confine ourselves to fermions.

In a Hilbert space with m fermions, the pth moment of Vk is defined as Mp(m) =
(1/N) tr[(Vk)p]. It is obvious that all odd moments vanish. The even moments can be
evaluated using Wick contraction of the Vks. The moment is then the sum over all patterns
of pairwise contractions. Assigning the same letter to pairs of Wick-contracted Vk , the fourth
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moment is, for instance, given by M4(m) = (1/N) tr(2AkAkBkBk + AkBkAkBk) where we
have used the cyclic invariance of the trace. For l → ∞, the low moments can be worked out
using combinatorial arguments [32]. Knowledge of the moments yields information on the
average spectral density ρ(E). This is because of the relation

tr(Vk)p =
∑

i

(Ei)p =
∫

dEρ(E)Ep (9)

where the Ei are the eigenvalues of Vk.
Canonical RMT is obtained for k = m and predicts the spectral density to have

a semicircular shape. On the other hand, in the dilute limit, all Wick-contracted pairs
of Vk become independent of each other, the moment M2p(m) is given by M2p(m) =
(2p − 1)!!(M2(m))p, and the spectral density is Gaussian. This shows that for fixed k
and for m monotonically increasing from m = k, the spectral density undergoes a transition
from a semicircular to a Gaussian shape. For k = 1, the transition can be worked out easily
because the level density for m > 1 is the convolution of m semicircles. Already for m = 9,
the spectral shape is very close to Gaussian. This argument fails for k � 2. In [32], the even
moments M2p(m) are worked out for p = 1, 2, 3, 4. The values obtained are consistent with
the gradual transition from semicircular to the Gaussian shape of the spectral density.

In nuclear theory, sums over all final states of the strength of some transition operator O
play an important role. Examples are single-particle transfer strengths or the Gamow–Teller
transition strength. Such transition strength sums can be worked out too using the moments
method. The reason is that K = O†O can be expressed in terms of creation and annihilation
operators, and terms such as tr[(Vk)pK] can again be calculated using combinatorial arguments,
especially in the dilute limit. This method has been very successfully applied in the framework
of the nuclear shell model. In many cases, EGOE(k) results obtained in this way show
remarkable agreement with results of detailed shell-model calculations. We do not dwell on
this important issue because an extensive review has appeared quite recently [28].

Using the moments method to calculate the spectral density or transition strength sums,
we always use the ensemble average. Is it justified to compare such averages with properties
of a given physical system (as we do when comparing with shell-model calculations)? While
a given physical system obviously does not permit averaging over the (physically non-existent
and fictitious) ensemble, it does permit the determination of spectral averages. For instance,
by grouping neighbouring levels into bins, we can determine the mean spectral density. This
poses the question: are spectral averages (taken over a specific system) and ensemble averages
(over the EGE(k)) identical? This problem is referred to as the problem of ergodicity, in
analogy to the well-known ergodic problem in classical statistical mechanics concerning the
equality of phase-space average and the long-time average over a single trajectory.

For ensemble averaging to be relevant for an individual system, the property under study
must vary little from member to member of the ensemble. In the context of the moments
method, the question of ergodicity is answered by calculating the variances

	(2)
p,q(m) = (1/N) tr

(
V

p

k

)
(1/N) tr

(
V

q

k

) − (1/N) tr
(
V

p

k

)
(1/N) tr

(
V

q

k

)
. (10)

For canonical random-matrix theory and in a normalization where the individual moments are
finite in the limit N → ∞, the variances 	(2)

p,q vanish asymptotically: The canonical ensembles
are ergodic as far as the spectral density is concerned. For the embedded ensembles, the
calculation of the variances in equation (10) involves contractions between pairs of operators
located in different traces as well as in the same trace. The treatment of the first kind of pairs
requires combinatorial techniques beyond those developed for the moments [32]. Mon and
French could show that for EGOE(k), 	(2)

p,q(m) vanishes asymptotically for l → ∞. Thus, they
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could demonstrate ergodicity for the spectral density. Their argument can easily be extended
to EGUE(k).

Unfortunately, the moments method, while very useful for the spectral density and for
statistical spectroscopy, is only of limited use for calculating spectral fluctuations. For
canonical RMT, Mon and French consider density fluctuations as excitations of the semicircle
and use this approach to study spectral GOE fluctuations. They succeed in re-deriving the
logarithmic dependence of the spectral stiffness on the length of the energy interval. However,
the method apparently does not permit the study of short-scale fluctuations such as the nearest-
neighbour spacing distribution. Mon and French apply the same method to EGOE(k) with
m � k. They show that long-range fluctuations of the spectrum are large. As a consequence,
neither the position of a given (numbered) eigenvalue nor the position of the centre of the
spectrum or the variance are ergodic. We return to this point in section 6. The short-range
fluctuations, however, which yield information about spectral statistics, pose difficulties. To
quote from [14]: ‘. . . there is no real theory yet for EGOE fluctuations, the gap being one of
the most significant ones in the entire subject.’.

4. Numerical results

Insight into the spectral fluctuation properties of the embedded ensembles may be gained from
numerical simulations. Such simulations have been performed from the early days of the field.
Here we review separately the simulations for fermionic and for bosonic systems.

4.1. Fermionic systems

Prior to the introduction of EGE(k) by Mon and French [32], numerical simulations used
the two-body random ensemble (TBRE). This ensemble was introduced in the context of
nuclear physics where standard shell-model techniques were available to calculate the spectra
of given spin and parity (and isospin if relevant) in terms of a fixed two-body interaction. The
latter was replaced by an ensemble of two-body matrix elements with a Gaussian distribution,
zero mean value and a common second moment. The antisymmetrized (fermionic) random
two-body matrix elements thus define the residual interaction among m particles distributed
over l degenerate single-particle states. Inasmuch as nuclei are governed by one- and two-
body forces, the TBRE is clearly a more suitable stochastic model than canonical RMT.
The complexities arising from the angular-momentum and spin couplings, from correlations
between many-body matrix elements induced by the two-body character of the interaction, and
from Pauli’s exclusion principle made it impossible to treat the TBRE analytically. This led
French and Wong [18, 19] and Bohigas and Flores [9, 10] to resort to numerical simulations
using matrices of rather small dimensions (�61). The main question addressed in these
simulations was: are the spectral fluctuation properties of the TBRE the same as those of the
GOE?

The main results of these early works are: (i) The spectral density of the TBRE is
Gaussian, in agreement with the results of shell-model calculations with realistic interactions.
(ii) The spectral density displays a transition from Gaussian to semicircular shape as the
rank of the interaction k is increased. (iii) Unfolding the spectrum of each member of the
ensemble separately yields good agreement of the fluctuation properties of the TBRE with
those predicted by canonical RMT. (iv) The fluctuations of the position of the first eigenvalue
of the TBRE are stronger than those for the GOE. (v) The TBRE is neither stationary nor
ergodic. These results hold also for simplified versions of the TBRE, which do not involve,
or at least do so only partially, the complexity of the angular momentum algebra.
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Early results on the pth nearest-neighbour spacing distribution displayed systematic
deviations between the TBRE and the GOE [11] while experimental data showed agreement
with GOE predictions. This seemed to suggest the existence of an effective many-body
interaction in nuclei. It was soon realized, however, that the deviations were related to
the method of analysis of the spectra and caused by the non-ergodic properties of the TBRE
[39, 20]. More precisely, the deviations were due to the difference between ensemble averaging
and spectral averaging. Ensemble averaging uses a single staircase function (the integrated
level density) to unfold the spectra of all members of the ensemble. This function is obtained by
superposing the levels of all members of the ensemble. Early numerical results [18, 9] (and later
analytical studies [21, 32]) had shown that in the dilute limit (l � m � k, l → ∞,m → ∞
with m/l → 0), the mean level density is Gaussian. This spectral shape was accordingly used
for ensemble unfolding. On the other hand, spectral averaging uses a separate staircase function
for each member of the ensemble. It was found that the deviations from GOE behaviour
obtained by ensemble averaging were related to the variance of the spacing distribution; an
analytical estimate of this effect, linking ensemble and spectral average, was also obtained
[20, 12]. A first systematic comparison of spectral and (a corrected) ensemble averaging,
using matrices of rather small dimensions, was carried out in [13]. This comparison showed
remarkable agreement between the TBRE results and GOE predictions. The agreement
invalidated the earlier conclusion that nuclear interactions are mainly of many-body type, and
has left open the question of the rank of the effective nuclear interaction [12, 14].

Unfolding the spectrum is technically a subtle task. It can considerably influence the
results on spectral fluctuations. Attention was therefore devoted to a consistent way of
constructing ensemble averages which yield correct spectral fluctuations [14, 29]. This
problem has recently again attracted attention [17, 23]. In the dilute limit, the spectral
density is Gaussian. However, knowledge of this fact is not sufficient for a proper unfolding
of the spectra of the EGE(k) and of the TBRE as obtained in numerical simulations with
finite-dimensional matrices. This is because for such matrices the first and second moments of
the spectrum are not ergodic (cf section 6.3). Hence, these moments must be normalized for
every member of the ensemble. The sensitivity of the spectral fluctuations to these corrections
was addressed in [17], where either the first or the second moment, or both, are corrected
for every matrix of the ensemble. The results show that, in the centre of the spectrum, the
nearest-neighbour spacing distribution is not sensitive to such corrections. For the two-point
function, ensemble unfolding with the Gaussian mean level density yields results that deviate
clearly from predictions of canonical RMT. A slight correction results from adjusting the width
of the distribution for every member of the ensemble. A drastic improvement is obtained when
the distribution for every member of the ensemble is recentred. Applying both corrections
together yields results which are hardly distinguishable from those of canonical RMT. Once
the low moments of the spectral distributions are adjusted so as to coincide for all members
of the ensemble, a polynomial fit for the ensemble staircase function is usually implemented.
This procedure yields a function with which the spectra can be meaningfully unfolded.

A method for spectral unfolding which is somewhat more complicated but has a firm
theoretical basis [32, 14] for the embedded ensembles, uses a Gram–Charlier expansion.
Starting from the fact that in the dilute limit the spectral density is Gaussian, one writes the
spectral density ρs(x) of an ensemble of matrices of finite dimension in the form [14, 29]

ρs(x) = ρG(x)

[
1 +

∑
n�3

cnHn(x)

n!

]
. (11)

Here, x = (E − Ec)/σ is the recentred energy in units of its standard deviation, ρG is
the Gaussian distribution and Hn(x) is the Hermite polynomial of degree n. The Hermite
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polynomials describe the long-wavelength oscillations of ρs(x) (long in terms of the mean
level spacing) about the asymptotic value ρG(x). The coefficients cn are adjusted so as to
minimize �RMS, the overall root-mean-square error of the level-to-level deviations of the
staircase function calculated from equation (11) from the data. Explicit expressions for c3 and
c4 are given in [29]. One uses equation (11) with some maximum value n0 in the sum over
n. This value should be sufficient to eliminate any secular trend in �RMS while preserving the
fluctuations of the spectrum. The value of n0 is usually determined by calculating �RMS as
a function of n0, and by choosing the smallest value beyond which no significant corrections
to �RMS are found. For the EGE(k) this method yields good agreement with the spectral
fluctuation properties predicted by canonical RMT [14, 29, 28].

The spectral fluctuation properties at the edge of the spectrum have also received increased
attention. These are interesting for a comparison of TBRE and EGOE(k) results with the
positions of low-lying nuclear states. Bohigas and Flores [10] compared the properties of the
low-lying part of the spectrum of the TBRE and the GOE. They showed that the widths of
the positions of individual eigenvalues were much larger for the TBRE than for the GOE.
Cota et al [15] fitted the nearest-neighbour spacing distribution to a Brody distribution,
P(s, ω) = α(ω + 1)sω exp[−αsω+1] with α = {[(ω + 2)/(ω + 1)]}ω+1, obtaining for the
Brody parameter the value ω ≈ 0.80 ± 0.05. More recent results by Flores et al [17] show
that the semi-Poisson distribution, P(s) = 4s exp[−2s], gives a better fit than the Brody
distribution, if the levels of each member of the ensemble are normalized first according to an
individual Gaussian distribution (spectral unfolding).

Numerical simulations using matrices of dimension ∼3000 have repeatedly found
agreement between the fluctuation properties of the EGE(k) and the TBRE at the centre of the
spectrum on the one hand, and the predictions of canonical RMT on the other. Therefore, it is
often taken for granted that a random k = 2 part in the Hamiltonian is sufficient to induce level
fluctuations of canonical RMT type. This point of view is at odds with the fact that many-body
systems with random few-body interactions (both for fermions and bosons) may possess a high
degree of order in the low-lying part of the spectrum [24, 6, 25, 7]. For instance, for the TBRE
with all the angular momentum couplings taken into account explicitly, it was found that there
is a statistical preference for J π = 0+ ground states despite the fact that these states account
only for a small fraction of Hilbert space [24]. Moreover, these J π = 0+ ground states are
separated by a gap from the lowest excited state. Other properties such as localization in Fock
space [26] and odd–even binding effects [33] show that pairing effects are robust properties of
two-body interactions. Such properties are usually understood in Hamiltonians which involve
some collective behaviour. All these results, based on Hamiltonians with random interactions,
contradict the basic philosophy of and the predictions based on canonical RMT and suggest
that the embedded ensembles may not always yield results which coincide with canonical
RMT.

4.2. Bosonic systems

Early analytical results by Kota and Potbhare [27] indicated a Gaussian spectral density both
in the dilute and the dense limits. The dense limit which exists only for bosons, is defined as
m → ∞ for fixed l and k. Manfredi [30], using matrices of dimension 364 (l = 4,m = 11),
compared for the first time the spectral fluctuation properties at the centre of the spectrum of
EGE(k) for bosons with the results of canonical RMT. Using spectral unfolding he concluded
that there is no significant difference between the two ensembles. Patel et al [34] considered this
problem in the dense limit, studying the case of l = 5 and m = 10. These authors constructed
the ensemble-averaged staircase function using a sixth-order Gram–Charlier expansion (11).
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(a) (b)

Figure 1. Nearest-neighbour spacing distribution P (s) obtained by (a) ensemble unfolding and
(b) spectral unfolding. The dotted curves correspond to the Wigner surmise and the dashed to the
Poisson distribution. We note the different vertical scales used in the frames. Taken from [2].

(a) (b)

Figure 2. �3-statistics (solid lines) measured at the centre of the spectrum after (a) ensemble
unfolding and (b) spectral unfolding. The dotted curves correspond to the GOE results, the dashed
to a Poissonian spectrum and the dotted-dashed to a picket-fence spectrum. Taken from [2].

They found excellent agreement with canonical RMT results for the nearest-neighbour spacing
distribution (with a Brody parameter ω = 0.95) and for the �3-statistic. These results led
them to conclude that the embedded ensembles possess generically (for fermions and bosons)
the spectral fluctuation properties of canonical RMT.

Recently it was found analytically, however, that the embedded ensembles for bosons are
not ergodic in the dense limit [1, 2]. More precisely, the fluctuations of the centroids and
widths of the spectrum (in units of the average width) do not vanish in this limit, but attain
constant values (cf subsection 6.3). This fact implies that unfolding the spectra by ensemble
averaging or by spectral averaging will yield different results. The Hilbert-space dimension
for bosons is given by equation (7) and it is then clear that the effect can be best displayed
numerically for l = 2.

Figures 1 and 2 illustrate the non-ergodic behaviour for m = 3000 bosons and the
case of a two-body interaction (with 1512 members forming the ensemble) for the nearest-
neighbour spacing distribution and for the �3-statistic, both taken in the centre of the spectrum.
Spectral unfolding (ensemble unfolding) was done by fitting a polynomial of degree 11 to
the staircase function of each member of the ensemble (to the ensemble-averaged staircase
function, respectively). For ensemble unfolding, the individual spectra were not recentred or
rescaled since there is now no theoretical support for this procedure. In fact, rescaling and
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recentring the spectra would yield a non-Gaussian average level density. Interestingly, in the
case of spectral unfolding the nearest-neighbour spacing distribution is dominated by a large
peak centred at s = 1. This suggests that individual spectra have an almost constant level
spacing, i.e. are close to spectra of picket-fence type. This is further supported by the large
plateau observed in the plot for the �3-statistic.

For the same case (l = 2,m = 3000) the structure of the eigenfunctions was also
investigated [1, 2]. It was found that individual spectra consist generically of a superposition
of independent sequences of levels with constant spacings as if there was some symmetry
present in the system. When a new sequence appears, the old and the new sequences are
interlaced, and the level spacing is no longer constant for a while. In the staircase function,
this is seen as a sudden change in the average slope, i.e. as a kink. The first few eigenstates of
the new sequence are localized in Hilbert space, even though they may correspond to rather
highly excited states of the spectrum. This is illustrated in figure 3, where the squares of the
coefficients cin of the eigenvector expansion in an ordered many-body basis |µn〉 are plotted
(cf [2]).

These numerical results show that in the dense limit, the bosonic EGE(k) differ
significantly from the canonical ensembles of RMT. In the case l = 2 it has been established
that the difference is due to the exact integrability of the system in the semiclassical limit [5].
Essentially, this case corresponds to the quantization of a classical two-degrees of freedom
system which possesses two independent integrals of motion, the energy and the number of
particles. For arbitrary values of l, the corresponding classical system has l degrees of freedom.
As l increases, chaotic trajectories appear in phase space, typically for energies around the
centre of the spectrum, and there is a corresponding transition in the spectral fluctuations of
the quantum system.

In concluding this section we mention that the spectral properties at the edge of the
spectrum have also been investigated for bosons. Using a random interaction in the framework
of the interacting boson model,Bijker and Frank have demonstrated the emergence of collective
motion in the low-lying part of the spectrum, and have studied the dependence of collective
motion on the rank k of the interaction [6–8]. When the number of interacting bosons m is
large enough with respect to k, they find a preponderance of J π = 0+ ground states as well as
definite evidence for the appearance of vibrational and rotational structures. For m ∼ k they
do not obtain an indication of vibrational or rotational band structures.

5. The method of replicated variables

Verbaarschot and Zirnbauer [37] used the replica trick developed in statistical mechanics for the
study of spin glasses and of Anderson localization to investigate spectral properties of the GOE
and EGOE(k). Using the replica trick, one writes the observable under study as the logarithmic
derivative of a suitably chosen generating function Z, replaces log Z by limn→0[Zn − 1],
evaluates Zn for positive integer values of n and takes the limit n → 0 of the resulting
expression. Similar to what happens in the supersymmetry approach described in section 6
below, averaging Zn yields in the exponent of Zn a quartic term in the integration variables
which contains the matrix A

(k)

µν;ρσ (β) defined in equation (12). The authors introduce matrix

elements of the operators ψ
†
k,α which connect the m-particle states with the (m − k)-particle

states and perform the Hubbard–Stratonovich transformation in this mixed representation.
They use the saddle-point approximation for the one-point function and find a semicircle

for the spectral density. The moments method having shown that the semicircle does not apply
for all values of (m, k), points to the need to study the loop expansion. It is shown that there
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Figure 3. Intensities |cin|2 of a sequence of eigenvectors in the many-body basis in the vicinity
of a kink in the staircase function. The two overlapping segments of nearly equidistant levels are
easily distinguished by the structure of the corresponding eigenfunctions. Taken from [2].

are terms in the loop expansion which correct the semicircle. However, it is not possible to
evaluate all such corrections.

The saddle-point approximation is then applied to the two-point function within the same
mixed representation as used for the one-point function. The saddle-point solution allows
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for the existence of a Goldstone mode. This mode carries the variable s = (E1 − E2)/d

where d is the mean level spacing. It is with respect to this variable that fluctuation properties
of the spectrum are measured. The two-point function is evaluated using an expansion in
inverse powers of s, the point being that the stiffness of the GOE spectrum relates to the
occurrence of the factor s−2 in the average two-point function. Difficulties and, in fact,
uncertainties arise from the need to integrate over the massive (i.e. the non-Goldstone) modes.
With this proviso, it is found that the leading terms in the loop expansion combine to yield
the value −(17/2)(1/(π2s2)) for the density–density correlation function. This result has to
be compared with the GOE value −(1/(π2s2)). Led by early numerical results reviewed in
section 4, the authors believe that they should have obtained the GOE result and speculate
that the difference is due to high-order terms in the loop expansion. They show that if the
density–density correlation function is ∝ s−2 then stiffness of the spectrum is implied.

Results obtained more recently [1–4] and reviewed in sections 6 and 7 cast some doubt
on the assertion that the spectral fluctuation properties of EGE(k) coincide, for all values of
k, with those of the canonical ensembles, at least in the limit l → ∞. This would imply
that higher-order loop corrections in the approach of [37] could modify the factor (17/2) in a
k-dependent fashion.

6. The matrix of second moments

A novel approach to determining spectral properties of EGE(k) was developed in [1–4]. We
describe this approach here for the case of fermions. The case of bosons can be treated in
complete analogy. The starting point is the observation that the matrix elements 〈µ|Vk|ν〉 of the
stochastic operator Vk are themselves also random variables and have a Gaussian probability
distribution with mean value zero. Therefore, all properties of the embedded ensembles are
completely determined by the matrix A

(k)

µν;ρσ (β) of second moments defined by

A
(k)

µν;ρσ (β) = 〈µ|Vk(β)|σ 〉〈ρ|Vk(β)|ν〉. (12)

The idea is to extract information on EGE(k) by studying the properties of the matrix A
(k)

µν;ρσ(β).
Performing the average yields

A
(k)

µν;ρσ (β) =
∑
αδ

[
〈µ|ψ†

αψδ|σ 〉
[
〈ρ|ψ†

δ ψα|ν〉 + δβ1〈ρ|ψ†
αψδ|ν〉

]]

=
∑
αδ

[
〈µ|ψ†

αψδ|σ 〉
[
〈ρ|ψ†

δ ψα|ν〉 + δβ1〈ν|ψ†
δ ψα|ρ〉

]]
. (13)

In the last of equations (13) we have used the reality of the matrix element 〈ν|ψ†
δ ψα|ρ〉.

6.1. Duality. Eigenvector expansion

In the unitary case, there is a connection between the matrices A(k)(2) for the k-body interaction
and A(m−k)(2) for the (m−k)-body interaction. The relation is referred to as duality and reads

A
(k)

µν;ρσ (2) = A
(m−k)

µσ ;ρν(2). (14)

We note the difference in the sequence of indices {µνρσ } on the two sides of this equation.
The proof of equation (14) rests on the fact that for every m-fermion state |µ〉 and for every
operator ψk,α with ψk,α|µ〉 �= 0, there exists a uniquely defined operator ψ(m−k),γ such that
ψ(m−k),γ ψk,α |µ〉 = |0〉, the vacuum state. We emphasize that the duality relation has nothing
to do with particle–hole symmetry. It applies likewise to bosons and can be extended to the
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case β = 1. The duality relation obviously assigns a special role to the case 2k = m. This is
the reason why spectral properties of EGE(k) change at 2k = m.

For 2m > l, the available single-particle states are more than half filled, and it is tempting
to use particle–hole symmetry to simplify the algebra. Rewriting Vk in terms of hole operators
and bringing the hole creation operators up front, one creates a sum of k′-body interactions
with k′ = 1, 2, . . . , k. This is why particle–hole symmetry is of limited use only, except for
the dilute limit.

A very useful tool in the analysis of spectral properties of EGE(k) is the eigenvector
expansion of the matrix A(k). We take the unitary case, β = 2, for fermions and consider the
matrix A(k) of second moments as a matrix in the product space {µν}. In this space, A(k)(2)

is a Hermitean matrix and can, therefore, be diagonalized. The eigenvalue equation reads∑
ρσ

A
(k)

µν;ρσ (2)C(sa)
σρ = �(s)(k)C(sa)

µν . (15)

The index s = 0, 1, . . . labels different eigenvalues �(s) and the index a labels degenerate
eigenvectors. The eigenvectors are orthogonal. We choose the normalization∑

µν

C(sa)
µν C(tb)

νµ = Nδst δab. (16)

Provided that the eigenvectors form a complete set, the matrix A(k) can be expanded in the
form

A
(k)

µν;ρσ (2) = 1

N

m−k∑
s=0

∑
a

�(s)(k)C(sa)
µν C(sa)

ρσ . (17)

In writing equation (17) we have anticipated the fact that for s > (m−k), the eigenvalues �(s)

vanish. Knowledge of the expansion (17), i.e. of the eigenvectors and eigenvalues of A(k),
makes it possible to calculate the low moments of Vk. Moreover, using the expansion (17) in the
framework of supersymmetry allows for the use of the Hubbard–Stratonovich transformation.
The orthogonal case is treated analogously. Combining the results for β = 1, 2, we obtain

A
(k)

µν;ρσ (β) = 1

N

m−k∑
s=0

∑
a

�(s)(k)
[
C(sa)

µν C(sa)
ρσ + δβ1C

(sa)
µρ C(sa)

νσ

]
. (18)

To appreciate the significance of the eigenvector expansion equation (17), it is useful to
recall the form of the second moment of the GUE Hamiltonian Hµν ,

HµσHρν = λ2

N
δµνδρσ . (19)

We have put v2 = 1 for EGE(k) and, by analogy, put λ = 1 for the GUE. The fact
that GUE coincides with EGUE(m) then implies that for k = m, equation (17) reduces to
equation (19). Put differently, the one non-vanishing eigenvalue of the GUE is �(0)(m), and
the associated non-degenerate eigenvector is C(0)

µν = δµν . All other orthogonal eigenvectors
belong to eigenvalue zero. The comparison shows that the eigenvalue expansion equation (17)
is the natural generalization of equation (19) for the second moment of the GUE Hamiltonian
to EGUE(k). The Kronecker deltas in equation (19) express the unitary invariance of GUE.
The fact that for k < m the sum over s in equation (17) extends up to (m−k), with eigenvectors
C(sa)

µν which differ from Kronecker deltas, is due to the fact that Vk does not possess this unitary
invariance for k < m. We remark in parenthesis that the eigenvalue in equation (19) obviously
has value unity, while it turns out that for m = k, the eigenvalue �(0)(m) in equation (17) has
the value

(
l

k

)
. The difference is due to the fact that when we use second quantization to write
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GUE = Vm and work out A(m)(2), we have to count the number of holes which is
(
l

k

)
. In the

appendix of [37], results closely related to equations (12) to (18) were derived.
The form of the eigenvectors and eigenvalues remains to be determined. The eigenvectors

C(sa)
µν have the form

C(sa)
µν = 〈µ|ψ†

s,αψs,γ |ν〉, (20)

where a stands for the set (α, γ ). The form equation (20) applies for all s = 0, 1, . . . ,m

independently of the actual value of the eigenvalue �(s)(k). Whenever two or more single-
particle indices in the sets α and γ coincide, special attention is required [4]. For this reason,
the number D(s) of orthonormal degenerate eigenvectors C(sa)

µν belonging to fixed s (and, thus,
the dimension of the corresponding subspace of Hilbert space) are given by

D(s) =
(

l

s

)2

−
(

l

s − 1

)2

. (21)

It follows that
∑m

s=0 D(s) = (
l

m

)2
, the dimension of the product space {µν}, so that the

eigenvectors form a complete set. The eigenvalues are given by

�(s)(k) =
(

m − s

k

)(
l − m + k − s

k

)
. (22)

We observe that �(s)(k) = 0 for s > (m−k). This fact limits the sums over s in equations (17)
and (18). Using the eigenvector expansion in the duality relation, equation (14), generates
useful identities.

For bosons, the eigenvalue expansion equation (18) applies likewise. The eigenvectors
have the form given in equation (20), with ψ replaced by χ , and are normalized as in
equation (16), with N replaced by NB . The dimension D

(s)
B of the subspace spanned by

degenerate eigenvectors characterized by s with s = 0, 1, . . . ,m is given by D
(0)
B = 1 and, for

s � 1, by

D
(s)
B =

(
l + s − 1

s

)2

−
(

l + s − 2

s − 1

)2

. (23)

Again, we have
∑m

s=0 D
(s)
B = N2

B , showing that the eigenvectors form a complete set. The
eigenvalues are given by

�
(s)
B (k) =

(
m − s

k

)(
l + m + s − 1

k

)
. (24)

The eigenvalues vanish for s > m − k, in keeping with the GUE result where for k = m the
only non-vanishing eigenvalue belongs to s = 0.

6.2. Group-theoretical aspects

Duality and the eigenvector decomposition equation (18) apply to both fermions and bosons.
A group-theoretical analysis [35] shows that both these results and much of the structure
displayed in subsection 6.1 apply much more widely and are rooted in symmetry properties of
the embedded ensembles. The analysis also gives a deeper meaning to the concept ‘embedded
ensemble’. For simplicity, we confine ourselves to the unitary case although all results apply
likewise to the orthogonal one. We denote by α

†
j the creation operator for a fermion or a boson

in single-particle state j and by �
†
kα the creation operator of a normalized state containing k

particles (fermions or bosons). This normalized state need not be a Slater determinant or a
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product state (as is the case for the operators ψkα and χkα defined in section 2) but may be a
linear combination of such states.

Three symmetry groups are relevant for the embedded ensembles. These are (i) the
group SU(l) of unitary transformations of the l degenerate single-particle states |j 〉 with
j = 1, . . . , l; (ii) the group U(Nk) of unitary transformations of the k-body interaction where
Nk is the dimension of the Hilbert space containing k particles (fermions or bosons); (iii)
the group U(Nm) of unitary transformations of the Hilbert space containing m particles, with
Nm the dimension of this space. As we shall see, the group SU(l) governs the embedding,
the group U(Nk) is obviously the symmetry group of EGUE(k), and U(Nm) is the symmetry
group of the GUE.

An element u ∈ SU(l) generates a unitary transformation of the single-particle states
and a corresponding transformation T (u)a

†
jT

†(u) of the creation operators a
†
j . Under u, the

operators �
†
tα transform according to the irreducible representation D

ft
αγ (u),

T (u)�
†
tαT †(u) =

∑
γ

Dft

αγ (u)�
†
tγ . (25)

Here t is an integer which may take the values m, k or (m − k). For fermions (bosons), the
matrices D are in essence totally antisymmetrized (symmetrized, respectively) powers of u.

In analogy with the familiar fractional-parentage technique, we can expand the m-particle
states |mα〉 = �

†
mα|0〉 into products of states containing k and (m − k) particles, respectively,

|mα〉 =
(

m

k

)−1/2 ∑
γ δ

�
†
kγ |(m − k)δ〉Cfmα

fkγf(m−k)δ
. (26)

The coefficients C
fmα

fkγf(m−k)δ
are the coefficients of fractional parentage or, equivalently, the

Clebsch–Gordan coefficients for the coupling [(fkf(m−k))fm] of the irreducible representations
fk and f(m−k) to fm.

The product �†
kγ �kδ of operators which appears in the definition of the k-body embedded

ensemble transforms according to the direct product of irreducible representations Dfk (u) and
Df k (u). The product can be reduced to a direct sum of irreducible representations Dgb (u).
This defines a set of basic k-particle interactions Bk(bα) which are Hermitean, transform
according to the irreducible representation Dgb (u), and are given by vector-coupling �

†
kγ

and �kδ via the Clebsch–Gordan coefficient C
gbα

fkγ f kδ
. Using the Wigner–Eckart theorem, we

can write the matrix element 〈mγ |Bk(bα)|mδ〉 as the product of a reduced matrix element
〈m||Bk(b)||m〉 and the Clebsch–Gordan coefficient C

gbα

fmγf mδ
.

The interaction Vk can now be rewritten as a sum over the operators Bk(bα). The
coefficients are uncorrelated Gaussian distributed random variables. Using this form and the
Wigner–Eckart theorem, one finds for the second moment of the matrix elements 〈mγ |Vk|mδ〉
an expression which is equivalent to the eigenvalue decomposition equation (18). The role
of the eigenvectors is played now by the Clebsch–Gordan coefficients, and the role of the
eigenvalues is taken by the squares of the reduced matrix elements 〈m||Bk(b)||m〉. The index
b coincides with the summation index s in equation (18). The duality relation also follows
from the Wigner–Eckart theorem. Thus, all the relations derived explicitly for fermions and
bosons are seen to follow from group-theoretical considerations.

These insights allow for a generalization of the concept of an embedded ensemble which
brings the underlying concepts to the fore most clearly. We consider an arbitrary compact
simple Lie group G and two independent systems labelled k and (m−k)whose basic states |fkα〉
and |f(m−k)γ 〉 transform according to the irreducible representations Dfk (g) and Df(m−k) (g) of
the group G, with g ∈ G. Now let us assume that a non-trivial interaction Vk of GUE type
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occurs only in system k. The embedding of this interaction into a space of different dimension
is accomplished by projecting the product states |fkα〉|f(m−k)γ 〉 onto the subspace of states
which transform according to the irreducible representation Dfm(g) which is contained in the
direct productDfk (g)×Df(m−k) (g). Let the associated projection operator be denoted by I (fm).
The embedded ensemble is then defined by the Hamiltonian I (fm)VkI (fm). This definition
comprises the essence of the group-theoretical extension of the idea of an embedded ensemble.
It is independent of the existence of fermions and bosons and relies only on group-theoretical
concepts.

Group-theoretical arguments can also be used to isolate that part of Vk which is invariant
under U(Nm), and to investigate symmetries of the generating functional in the supersymmetry
approach [35]. The part of Vk which is invariant under U(Nm) transforms either like the GUE
or like a multiple of the unit operator. Both possibilities actually occur in the decomposition.
The latter, taken by itself, would cause Poissonian level statistics. It carries particularly large
weight for k � m.

6.3. Moments of Vk

The eigenvector expansion equation (18) and the orthogonality relations equation (16) make
it possible to calculate low moments and variances of Vk without resorting to the dilute limit
l � m, at least for β = 2. Three observables of interest are

S = ((1/N) trVk(β))2

(1/N) tr(Vk(β))2

R = ((1/N) tr(Vk(β))2)2 − ((1/N) tr(Vk(β))2)2

((1/N) tr(Vk(β))2)2

κ = 2 + Q = (1/N) tr(Vk(β))4

((1/N) tr(Vk(β))2)2
.

(27)

The ratio S measures the fluctuations of the centre of the spectrum in units of the average width
of the spectrum. The ratio R measures the relative fluctuation of the width of the spectrum.
The parameter κ is the kurtosis, and Q marks the difference in spectral shape between the
semicircle (Q = 0) and the Gaussian (Q = 1). Explicit values for S,R,Q are given in [4, 2],
both for fermions and for bosons. The result for R was first obtained by French [20]. Both
S and R vanish in the limit l → ∞. However, for fixed values for k and m/l, both ratios
decrease very slowly (with inverse powers of the logarithm) with increasing dimension N of
the matrices. This fact is at the root of the difficulty in obtaining reliable spectral information
on EGE(k) from numerical simulations.

For the shape of the spectrum, the quantity Q is of primary interest. It is explicitly given
[4] in terms of the eigenvalues �(s)(k) and the dimensionalities D(s) introduced above. In the
limit l → ∞,Q vanishes if 2k > m with both k and m fixed, and with both k/m and m/l

fixed, while Q attains a finite and non-zero value for 2k � m with both k and m fixed, and with
both k and m/l fixed. This suggests that the transition from the semicircular to Gaussian shape
takes place for 2k � m. (It would take the study of higher moments to make this conclusion
unambiguous). As mentioned above, the critical role played by the value 2k = m is attributed
to duality.

For bosons in the dense limit, the ratios S and R do not vanish as m → ∞. Thus, the
fluctuations of the centroids and widths of individual spectra do not vanish asymptotically.
Hence, the bosonic ensembles are not ergodic in the dense limit m → ∞ with k and l fixed.
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6.4. Supersymmetry approach

The eigenvector expansion equation (18) makes it possible to apply the supersymmetry
approach. To see this, we recall that when one uses supersymmetry to calculate properties of
the GUE, equation (19) is extremely helpful. Indeed, after averaging the generating function
over the ensemble, there appears in the exponent a term which is quartic in the commuting
and anticommuting integration variables. Owing to equation (19), this quartic term can
be written as the square of a bilinear form, and the latter is handled with the help of the
Hubbard–Stratonovich (HS) transformation. Because of equation (18), a similar situation
arises for EGE(k). The form of this equation implies that the quartic term in the integration
variables obtained after ensemble-averaging, is a sum of squares of bilinear forms, and the HS
transformation again can be used. There is a price, however: whereas only a single graded
matrix σ is needed to carry out the HS transformation for the GUE, the EGE(k) requires the
introduction of as many σ -fields as there are independent eigenvectors to non-zero eigenvalues
in equation (18). This number rises steeply as m increases from k = m, see equation (21).

The saddle-point approximation to the integration over the σ -fields yields for EGE(k)
a semicircle for the spectral density, and universal Wigner–Dyson spectral fluctuations,
just as for the GUE. The loop expansion, generated by expanding the σ -fields around the
saddle-point solution, serves as a test of the saddle-point approximation. For the GUE,
all terms in the loop expansion vanish asymptotically for N → ∞. For EGE(k), it is
not possible technically to go beyond the lowest non-vanishing term of the loop expansion.
For the spectral density, one finds that, for 2k > m, this term vanishes asymptotically for
l → ∞. This fact reinforces the conclusion in subsection 6.3 that the spectral density
has semicircular shape for 2k > m. For 2k � m, finite corrections appear, the form
of which is consistent with the value of Q found in subsection 6.3. For the spectral
fluctuations (the two-point function), the situation is more ambiguous. The lowest-order
loop correction vanishes asymptotically for all values of k albeit it does so ever more slowly
as k decreases from k = m. This might be consistent with universal Wigner–Dyson level
statistics for all values of k. We note, however, that the lowest-order loop correction also
produces non-universal terms. Such terms might also arise in higher order and not vanish
asymptotically.

In summary, the supersymmetry approach yields useful information especially for
2k > m. It lends independent support to the conclusion that the change from semicircular
to Gaussian spectral shape sets in as k decreases and passes through the value 2k = m. For
the spectral fluctuations, it is consistent with but not necessarily in support of Wigner–Dyson
statistics for all values of k. However, for the physically most interesting case k = 2, it yields
very little information.

7. Binary correlation approximation

None of the analytical approaches described above has been able to yield definitive information
on the spectral fluctuation properties of EGE(k) for the physically interesting case k � m.
There exists, however, another approach first introduced by Mon and French for the calculation
of the one-point function [32]. This is the binary correlation approximation which applies in the
dilute limit k � m � l,m/l → 0 as m, l → ∞ [14]. The binary correlation approximation
can be generalized to investigate the two-point function [3, 4]. We first review the calculation
of the one-point function of the EGUE(k) in the version of Verbaarschot and Zirnbauer [37],
and then present that of the two-point function [3, 4]. We note that in the dilute limit the
distinction between fermions and bosons is physically irrelevant, both cases yielding the same
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results. For definiteness, we consider the case of fermions. To be free of singularities, we
choose in this section v2 = [�(0)(k)]−1 which implies a bounded spectrum of unit width.

7.1. One-point function

Following Verbaarschot and Zirnbauer [37], we expand the one-point function in a power
series in Vk,

g(z) ≡ 1

N
tr

(
1

z − Vk

)
= 1

N

∞∑
p=0

1

z2p+1
tr

(
V

2p

k

)
(28)

where z = E − iη,E is the energy and η > 0 is an infinitesimal increment. In the second
equation in (28), we have interchanged the summation and the average over the ensemble,
and we have used the Gaussian distribution of Vk which implies that only even powers of Vk

contribute. The ensemble average is carried out using Wick contractions. Each contracted
pair of Vk is evaluated in the dilute limit, i.e. replaced by v2�(0)(k) = 1. In the term of order
p, there are (2p − 1)!! different ways of pairwise contracting the Vk. The result is

g(z) =
∞∑

p=0

1

z2p+1
(2p − 1)!! = 1

z

∞∑
p=0

1

p!

[
1

2z2

]p

(2p)!. (29)

This expression is evaluated using the technique of Borel resummation. We use the identity
n! = ∫ ∞

0 e−t tn dt for the factor (2p)!. We interchange the summation and the integration.
The sum over p yields an exponential function, thus leading to

g(z) = 1

z

∫ ∞

0
dt exp

[
t2

2z2
− t

]
. (30)

Equation (30) converges provided Re[z−2] < 0. Writing z = −i|z|eiφ , we see that this
condition is fulfilled for −π

4 < φ < π
4 . The integral is evaluated as follows. First, we

choose as contour the straight line that joins the origin and z. Putting t = τeiφ , we rotate this
contour so that it comes to lie on the real axis. A new (real) integration variable u = τ/|z|
is introduced. The resulting integral converges for all z, and is evaluated in a straightforward
manner, yielding [37]

g(z) = i

√
π

2
exp

[
−z2

2

]
erfc

[
iz√

2

]
. (31)

Taking the limit η → 0 and recalling that the mean level density is given by ρ(E − iη) =
π−1 Im[g(E − iη)] we obtain the Gaussian form for the average level density

ρ(E) = (2π)−1/2 exp

[
−E2

2

]
. (32)

7.2. Two-point function

Our presentation differs slightly from that in [4] and takes account of recent developments
[36]. Again, we work in the dilute limit and consider the quantity

R2(z1, z2) = g(z1)g(z2)

g(z1) · g(z2)
− 1 (33)

where z±
1 = E± + ε/2 and z±

2 = E± − ε/2, with E and ε the mean value and the difference
of the energy arguments of the two Green functions, respectively. An upper plus (minus) sign
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denotes an infinitesimal positive (negative) imaginary energy increment, respectively. We are
interested in values of ε which are of the order of the mean level spacing and, thus, small
compared to unity (the width of the spectrum). Thus, we have approximately |z1| ∼ |z2|.
In order to obtain the connected part of the density–density correlator, z1 and z2 must have
imaginary energy increments of opposite signs.

Proceeding as in the case of the one-point function, we expand R2(z1, z2) in powers of
Vk. Using equation (28) we have

g(z1)g(z2) = 1

N2

∞∑
p=0

∞∑
q=0

1

z
p+1
1 z

q+1
2

tr[(Vk)p] tr[(Vk)q]. (34)

The Gaussian distribution of the Vk implies that p + q must be even. Using Wick contraction
we obtain two types of contributions. The members of the contracted pair either occur under
the same trace, or involve both traces. We refer to the latter as cross-contractions. Reordering
terms, we obtain

g(z1)g(z2) = 1

N2

∞∑
s=0

∞∑
p,q=0

1

z
2p+s+1
1 z

2q+s+1
2

(tr[(Vk)2p+s] tr[(Vk)2q+s ])s. (35)

In equation (35), the index s counts the number of cross-contracted pairs. There are
(2p+s

s

)(2q+s

s

)
different ways of cross-contracting the Vk, while there are (2p−1)!!(2q−1)!!ways of pairwise
contracting the remaining Vk. For the latter, we use the binary correlation approximation.
Thus, each one of these contractions yields a factor unity, irrespective of the position where
the contracted Vk appear in each of the traces. The result is

g(z1)g(z2) = 1

N2

∞∑
s=0

∞∑
p,q=0

(2p − 1)!!(2q + 1)!!

z
2p+s+1
1 z

2q+s+1
2

(
2p + s

s

)(
2q + s

s

)
(tr[(Vk)s ] tr[(Vk)s])s.

(36)

In [4], it was argued that in the limit l → ∞ the terms with s �= 0 become negligibly small
in comparison with the terms with s = 0. The latter correspond to the unlinked contributions.
Upon resummation, these terms factorize into the product g(z1) · g(z2). Therefore, the two-
point correlation function R2(z1, z2) defined in equation (28) vanishes asymptotically in the
limit l → ∞ and, thus, implies a Poissonian spectrum. In detail, the argument is as follows.

Observing that the binomial factors and the powers of z1 and z2 in equation (36) do not
depend on l or on m, and recalling that |z1| ∼ |z2|, we see that the only l-dependent factor is

Ts = 1

N2
(tr[(Vk)s] tr[(Vk)s ])s. (37)

Obviously T0 = 1 and, thus, all unlinked contributions are constant and independent of l.
Using counting arguments, the dilute limit, and Stirling’s formula, one obtains the asymptotic
estimate Ts ∼ l−sk for Ts [4]. This result implies that all connected contributions vanish in
the limit l → ∞ at least as l−k . We note that in the dilute limit, l−k vanishes as a power
of the logarithm of the Hilbert space dimension N. Hence the two-point function R2(z1, z2)

vanishes. This line of reasoning can also be applied to the n-point correlation function with
n > 2 showing that the spectrum is Poissonian.

This argument has the obvious flaw that it does not display the role of ε, the difference of
the energy arguments of the two Green functions. By the same token, the argument does not
display the difference between the connected part of the two-point function (where z1 and z2

carry infinitesimal imaginary increments of opposite signs) and the product of two advanced
(or two retarded) Green functions (where z1 and z2 carry infinitesimal imaginary increments
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of the same sign). In the case of canonical RMT, we know that in the first case (z1 and z2

carry infinitesimal imaginary increments of opposite signs) the analogue of R2 does not vanish
asymptotically (in fact, the asymptotic value of this function determines the �3-statistic and
the stiffness of the spectrum) while in the second case (z1 and z2 carry infinitesimal imaginary
increments of the same sign) the analogue of R2 vanishes asymptotically. This implies that in
the case of canonical RMT, the analogue of R2 has a discontinuity across the real energy axis.
It is to be expected that such a discontinuity exists likewise for R2(z1, z2).

Srednicki [36] has recently drawn attention to this singular behaviour and has considered
the convergence properties of the sums in equation (35) in the light of this question.
Equation (36) is symmetric in the indices p and q. This suggests writing R2(z1, z2) as

R2(z1, z2) =
∞∑

s=1

gs(z1)gs(z2)

g(z1) · g(z2)
Ts (38)

where the function gs(z) is given by

gs(z) =
∞∑

p=0

(2p − 1)!!

z2p+s+1

(
2p + s

s

)
= 1

s!zs+1

∞∑
p=0

(2p + s)!

p!(2z2)p
. (39)

In equation (38) we have used the fact that gs=0(z) = g(z), see equation (29). Using Borel
resummation and working out the resulting integrals as in the case of the one-point function,
one is led to the integral representation [36]

gs(z
±) = (∓i)s+1

s!

∫ ∞

0
du us exp

[
−u2

2
± iz±u

]
. (40)

The upper plus (minus) sign refers to a positive (negative) infinitesimal imaginary energy
increment, respectively. Using equation (40) in equation (38) yields

R
(
z+

1 , z
±
2

) = ∓1

g
(
z+

1

) · g(
z±

2

)
∫ ∞

0
du dv e−(u2+v2)/2 ei(z+

1u±z±
2 v)F (∓uv) (41)

where the function F(y) is defined as

F(y) =
∞∑

s=1

ys

(s!)2
Ts. (42)

Srednicki points out that, in order for both R2
(
z+

1 , z
+
2

)
and R2

(
z+

1 , z
−
2

)
to be well defined,

F(y) must be free of singularities on the real axis, in which case the integrals can be performed
‘without further (arbitrary) regularization’. Using the case k = 1, he shows that F(y) does
have a singularity. This then invalidates the conclusion drawn in [4] that the spectrum is
Poissonian. Srednicki concludes that the spectral statistics of the EGE(k) in the dilute limit
remains an unsolved problem [36]. The example k = 1 considered by Srednicki is all the more
remarkable because, in this case, it is clear from independent arguments that the spectrum is
Poissonian for m � 1.

8. Correlated matrix elements: the limiting ensembles

Differences between the spectral fluctuations of EGE(k) and canonical RMT may be attributed
to the fact that in EGE(k), the many-body matrix elements are strongly correlated while in RMT
they are not. The correlations are apparent from the definition of the ensemble, equation (4):
matrix elements not related by symmetry which involve different many-body states ψk,α ,
may have the same value. It is instructive to study whether and how these correlations of
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the matrix elements influence the spectral statistics. We do so by maintaining the graphical
structure of the EGE(k). By this we mean that many-body matrix elements which vanish for
the EGE(k) continue to have the value zero. We modify only the values of the non-vanishing
matrix elements in such a way as to display the role of the correlations. It is in this spirit
that we construct two limiting ensembles, one with maximum and the other with minimum
correlations among the matrix elements. Both ensembles have the same graphical structure
as the embedded ensembles. The EGE(k) will be seen to lie between these two limiting
ensembles. For simplicity we consider only fermions. We essentially follow [4].

The graphical structure of the embedded ensembles may be displayed by assigning to each
Hilbert space vector ψk,α a vertex α, and to each non-diagonal matrix element 〈µ|Vk|ν〉 which
is not identically equal to zero, a link connecting the vertices µ and ν. The diagonal matrix
elements 〈µ|Vk|µ〉 are represented by loops attached to the vertex µ. With the exception of the
loops, the resulting structure is referred to as a ‘regular graph’ in the mathematical literature
[31]. (For bosons, the resulting structure is not a regular graph.) The number of vertices is
obviously given by N, the dimension of Hilbert space. For fermions, the number M of links
emanating from any given vertex is the same for all vertices and given by

M =
k∑

s=1

(
m

s

)(
l − m

s

)
. (43)

This result is obtained by counting the non-diagonal matrix elements 〈µ|Vk|ν〉 that connect
states which differ in the occupation numbers of at most k particles. For k < m, we have
M < N − 1 while M = N − 1 for k = m. The number P of independent links is given by the
number of matrix elements above the main diagonal which do not vanish identically. Hence,

P = 1

2
MN. (44)

Obviously, N,M and P do not depend on the symmetry parameter β.
To obtain a measure for the correlations between matrix elements, we define the number

Kβ of independent random variables. This number differs for the unitary and the orthogonal
ensembles and is given by

Kβ = β

2

(
l

k

) [(
l

k

)
+ δβ1

]
. (45)

The ratio Kβ/P of the number Kβ of independent random variables and the number P of
different links serves as a measure of the correlations. For k � m,Kβ/P is much smaller
than one. It approaches the value β(N + δβ1)/(N − 1) monotonically from below as k
approaches m. This shows that for k � m there are strong correlations between matrix
elements on different links. The correlations disappear as we approach the canonical limit
k = m. This is illustrated for several parameters k,m and l in figure 4.

We now define the two limiting ensembles by assigning a minimum and a maximum
number of independent random variables to the graph structure of the embedded ensembles.
For the EGE(k), the parameter Kβ/P lies between the values associated with these limiting
ensembles. Obviously, the minimum number of random variables is one. The corresponding
ensemble EGEmin(k) is defined in terms of the matrix elements 〈µ|V min

k |ν〉 of the operator

V min
k = v

∑
αγ

ψ
†
k,αψk,γ . (46)

The factor v is a real (complex) Gaussian random variable for β = 1 (β = 2, respectively).
Without loss of generality we may, however, put |v|2 = 1, removing the distinction between the
unitary and the orthogonal cases. The ensemble EGEmax(k) containing the maximum number
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(a) (c)

(b) (d)

Figure 4. The ratio K1/P , see equations (44) and (45), on a logarithmic scale versus k/m. Panel
(a): f = m/l = 1/5. Panel (b): f = m/l = 1/2. Panel (c): l = 100. Panel (d): m = 12. Taken
from [4].

of independent random variables is obtained by assigning, within the constraints imposed by
symmetry, a different random variable vµν to each link of the graph. The matrix elements of
EGEmax(k) are given by

〈µ|V max
k |ν〉 = vµν

∑
αγ

〈µ|ψ†
k,αψk,γ |ν〉. (47)

For β = 1 (β = 2), the matrix vµν is real symmetric (complex Hermitean, respectively).
Elements not connected by symmetry are uncorrelated Gaussian random variables with mean
value zero and variance vµνvµ′ν′ = δµν′δνµ′ + δβ1δµµ′δνν′ .

The ensemble EGEmin(k) is fully integrable and has spectral fluctuations which are not of
Wigner–Dyson type. For k = 1, one finds two different degenerate eigenvalues λ1 = vl and
λ2 = 0, with degeneracies n1 = (

l−1
m−1

)
and n2 = (

l−1
m

)
. For k = m, the matrix representation of

EGEmin(m) in Hilbert space carries the entry von every element. Diagonalization of this matrix
is trivial and gives the eigenvalues Nv (non-degenerate) and zero ((N − 1)-fold degenerate).
Again, the ensemble is fully integrable, and the spectral fluctuations are not Wigner–Dyson.
Using the supersymmetry method it can be shown that the spectral fluctuation properties of
EGEmax(k) coincide with the predictions of RMT. From these facts, it is apparent that the
limiting ensembles cover the extreme cases of a fully integrable system and a system with
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Wigner–Dyson spectral statistics. Figure 4 then suggests that as k increases, the spectral
fluctuations of both EGOE(k) and EGUE(k) may undergo a gradual transition from Poissonian
to Wigner–Dyson behaviour.

9. Conclusions

We return to the questions raised at the end of section 1. We recall that both for k = m and in
the dilute limit, fermions and bosons behave qualitatively similarly, while the dense limit for
bosons is a special case.

(i) What is the shape of the spectral density? Among the four questions formulated in
the introduction, this is the one to which we have a nearly complete answer. The
moments method shows that there is a gradual transition from semicircular shape for
k = m to Gaussian shape in the dilute limit. This is supported by the binary correlation
approximation which yields a Gaussian shape in the dense limit. The eigenvalue expansion
of the matrix of second moments has added the insight that the semicircle prevails as long
as 2k > m, and that the transition to Gaussian shape sets in at 2k = m. The special role of
the value 2k = m is due to duality. The case of dense bosons is special: it is not ergodic.

(ii) What are the spectral fluctuation properties? The supersymmetry method suggests that
the spectral fluctuations are of Wigner–Dyson type as long as 2k > m. It is possible
that the range of validity of Wigner–Dyson spectral statistics extends into the domain
2k � m although here the supersymmetry method yields also non-universal contributions.
In the dilute limit, the situation is not clear. The straightforward extension of the
binary correlation approximation yields Poissonian statistics for l → ∞ but relies on
manipulations which are mathematically questionable. The eigenvector expansion of the
matrix of second moments yields expressions which change smoothly with k,m, l. From
these expressions one would not expect a sudden transition from Poissonian statistics
(which surely applies for k = 1) to Wigner–Dyson statistics for k = 2. The group-
theoretical approach shows that the part of Vk which transforms under U(Nm) like a
multiple of the unit matrix (and, thus, leads to Poissonian level statistics) is largest for
k � m. The study of the correlations between many-body matrix elements provides
intuitive insight into the causes responsible for deviations from Wigner–Dyson statistics.
Dense boson systems are close to integrable and display no similarity to Wigner–Dyson
spectral statistics.

(iii) Are these properties universal? In analogy with canonical RMT, we ask here whether the
spectral density and the spectral fluctuation properties hold irrespective of the Gaussian
choice for the k-body matrix elements, i.e. the variables vk;αγ defined in section 2. This
is a meaningful question: we recall that in canonical RMT, ensembles with non-Gaussian
weight factors have been studied. Since for m = k, EGE(m) is identical to canonical
RMT, non-Gaussian ensembles of EGE(k) type can certainly be defined. The analytical
methods reviewed in this paper all rely heavily on the Gaussian distribution of the vk;αγ .
At this point in time, no analytical approach is in sight to answer this question, nor are we
aware of any numerical simulations addressing the issue. Another aspect of universality
is addressed in the group-theoretical analysis of the embedded ensembles. It shows that
the embedded ensembles for fermions and bosons are part of a much wider class of
embedded random-matrix ensembles defined in terms of irreducible representations of
some compact Lie group.

(iv) Are the spectra ergodic? Partial answers to this question come from numerical simulations,
from the moments method, and from the eigenvalue expansion of the matrix of second
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moments. Ergodicity can be expected only in the limit of infinite matrix dimension. For
k = m ergodicity holds for all observables. In the dilute limit, the spectral density is
ergodic, but non-ergodic contributions vanish very slowly (with inverse powers of the
logarithm of the dimension of the matrices). This causes difficulties in the analysis of
numerically simulated spectra. For dense bosons, even the low moments of the spectral
density are not ergodic. It seems that this is the first known case of a random-matrix
model which is not ergodic in the limit of infinite matrix dimension. We are not aware of
any studies addressing ergodicity of the spectral fluctuations.

This review shows that after many years of work, the determination of the spectral density
and, especially, of the spectral fluctuation properties of EGE(k) still poses difficult problems.
The difficulties are due to the fact that EGE(k) lacks the symmetry properties of the canonical
ensembles of RMT.

Acknowledgments

We thank M Srednicki for communicating his work prior to publication. LB has profited
from discussions with J Flores, H Larralde, F Leyvraz and T H Seligman. LB acknowledges
financial support from the DGAPA-UNAM projects IN-109000 and IN-112200.

References

[1] Asaga T, Benet L, Rupp T and Weidenmüller H A 2001 Europhys. Lett. 56 340
[2] Asaga T, Benet L, Rupp T and Weidenmüller H A 2002 Ann. Phys., NY 298 229
[3] Benet L, Rupp T and Weidenmüller H A 2001 Phys. Rev. Lett. 87 010601-1
[4] Benet L, Rupp T and Weidenmüller H A 2001 Ann. Phys., NY 292 67
[5] Benet L, Bohigas O, Jung C and Leyvraz F in preparation
[6] Bijker R, Frank A and Pittel S 1999 Phys. Rev. C 60 021302R
[7] Bijker R and Frank A 2000 Phys. Rev. Lett. 84 420
[8] Bijker R and Frank A 2000 Phys. Rev. C 62 014303
[9] Bohigas O and Flores J 1971 Phys. Lett. B 34 261

[10] Bohigas O and Flores J 1971 Phys. Lett. B 35 383
[11] Bohigas O and Flores J 1972 Statistical Properties of Nuclei ed J B Garg (New York: Plenum) 195
[12] Bohigas O, Flores J, French J B, Giannoni M J, Mello P A and Wong S S M 1974 Phys. Rev C 10 1551
[13] Bohigas O and Giannoni M J 1975 Ann. Phys., NY 89 393
[14] Brody T A, Flores J, French J B, Mello P A, Pandey A and Wong S S M 1981 Rev. Mod. Phys. 53 385
[15] Cota E, Flores J, Mello P A and Yépez E 1974 Phys. Lett. B 53 32
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